Quiz 23.3

Find each product.

1)
$$(3m+5)(6m+4)$$

A)
$$18m^2 - 18m - 20$$

B)
$$18m^2 + 18m - 20$$

C)
$$18m^2 + 42m + 20$$

D)
$$18m^2 + 20$$

2)
$$(-2r-7)(5r-1)$$

A)
$$-10r^2 - 33r + 7$$

B)
$$12r^2 + 26r + 14$$

C)
$$12r^2 - 2r - 14$$

D)
$$-10r^2 + 7$$

3)
$$(n-2)^2$$

A)
$$n^2 - 4n + 4$$
 B) $n^2 + 4$

B)
$$n^2 + 4$$

C)
$$n^6 - 2n^3 + 1$$

D)
$$n^2 - 4$$

4)
$$(2x-5)^2$$

A)
$$4x^2 + 25$$

B)
$$4x^2 - 20x + 25$$

C)
$$x^2 - 2x + 1$$

D)
$$4x^2 - 25$$

Tammy rode her motorcycle home from work. The graph below shows Tammy's distance from home over time.

Tammy's Motorcycle Ride Home

- 5) On what time interval is Tammy stopped?
 - A) 0 minutes to 35 minutes
 - B) 35 minutes to 40 minutes
 - C) 40 minutes to 45 minutes
 - D) Tammy is never stopped

- 6) On what time interval is Tammy traveling the fastest?
 - A) 0 minutes to 35 minutes
 - B) 35 minutes to 40 minutes
 - C) 40 minutes to 45 minutes
 - D) Tammy travels at a constant pace at all times

The graph below represents the total number of times a bat is swung on the playground over a 5 - day period.

Bat Swung on the Playground

Bat

- 7) What is the slope of this line segment? Include the appropriate units in your answer.
 - A) $\frac{15}{1}$ bats swung per Day
 - B) $\frac{300}{1}$ bats swung per Day
 - C) $\frac{30}{1}$ bats swung per Day
 - D) $\frac{150}{1}$ bats swung per Day
- 8) Write an equation that represents the total number of bats swung, B, after, d, days.
 - A) B = 300d
- B) B = 15d
- C) B = 150d
- D) B = 30d
- 9) If this trend continues, how many bats will be swung in 11 days?
 - A) 165 Bats Swung
 - B) 330 Bats Swung
 - C) 3300 Bats Swung
 - D) 1650 Bats Swung