Lesson 38 Applications of Quadratic Equations

1. A baseball is thrown into the air and its height (h), in feet, can be modeled by the equation $h = -7t^2 + 34t + 5$, where t represents time in seconds.

How many seconds will it take for the baseball to hit the ground (h = 0) after it is thrown into the air?

thrown into the air?

$$h = 0$$
 $h = -7t^2 + 34t + 5$
 $0 = -7t^2 + 34t + 5$
 $0 = -7t^2 + 34t + 5$
 $0 = -7t^2 - t + 35t + 5$
 $0 = -7t^2 - t + 35t + 5$
 $0 = -7t^2 - t + 35t + 5$
 $0 = -7t^2 - t + 35t + 5$
 $0 = -7t^2 + 1 + 5(7t + 1)$
 $0 = (-t + 5)(7t + 1)$

2. Suppose a football player kicks a ball and the height (h) of the football in feet can be modeled by the equation $h = -8t^2 + vt + c$, where t is the time in seconds after the ball is kicked, v is the initial upward velocity, and c is the starting height.

Write an equation that can be used to find the height (h) of the ball after t seconds if the initial upward velocity is 15 ft/sec and the starting height is 2 ft.

Answer
$$h = -8t^2 + 15t + 2$$

$$h = -8t^2 + v + c$$

$$v = 15$$

$$h = c = 2$$

If the ball is not touched, how long will it take for the ball to reach the ground?

Answer
$$t = 2 \sec 2 \cot 5$$

$$0 = -8t^{2} + 15t + 2$$

$$0 = -8t^{2} - t + 16t + 2$$

$$0 = -t(8t+1) + 2(8t+1)$$

$$0 = (-t+2)(8t+1)$$

$$-t+2 = 0$$

$$+t + t$$

$$2 = t$$

$$2 = t$$

$$2 = t$$

$$4 = -1$$

$$2 = t$$

$$4 = -1$$