## I. Zero and Negative Exponents

**How do Exponents Work?** 

1. 
$$3 \cdot 3 = 3^2$$

Base → What is being multiplied

2. 
$$\underbrace{4 \bullet 4 \bullet 4 \bullet 4 \bullet 4}_{\varepsilon} = 4^{5}$$

Exponent → How many bases you are multiplying

$$3. \quad \underbrace{x \bullet x \bullet x}_{3} = x^{3}$$

**Special Exponents** 

Zero as an Exponent: Any number (that is not zero) raised to the zero power is equal to 1

A. 
$$5^0 = 1$$

B. 
$$(-3)^0 = 1$$

C. 
$$x^0 = 1$$

**Negative Exponents:** Moving a base and its exponent across the fraction bar changes the sign of the exponent.

D. 
$$2^{-1} = \frac{2^{-1}}{1} = \frac{1}{2^{1}}$$

D. 
$$2^{-1} = \frac{2^{-1}}{1} = \frac{1}{2^1}$$
 E.  $3^{-4} = \frac{1}{3^4} = \frac{1}{81}$  F.  $\frac{1}{2^{-3}} = \frac{2^3}{1} = 8$ 

F. 
$$\frac{1}{2^{-3}} = \frac{2^3}{1} = 8$$

Examples: Simplify the expression so that there are no negative exponents left.

1. 
$$(-1.23)^0 =$$

1. 
$$(-1.23)^0 = 1$$
 2.  $(-4)^{-3} = \frac{1}{(-4)^3}$  3.  $\frac{2^3}{3^{-5}} = 2^3 \cdot 3^5$ 

3. 
$$\frac{2^3}{3^{-5}} = 2^3 \cdot 3^5$$

Examples with Variables: Simplify the expression so that there are no negative exponents left.

4. 
$$7s^{-4}t^2$$

5. 
$$\frac{2}{a^{-3}}$$

6. 
$$\frac{n^{-5}}{v^2}$$

$$= 2a^3$$

$$= \frac{1}{v^2 n^5}$$

## **Multiplication Properties of Exponents** 11.

**Multiplication Powers with the Same Base** 

For every nonzero number a and integers m and n,  $a^m \cdot a^n = a^{m+n}$ 

Examples:

$$3^5 \cdot 3^4 = 3^{5+4} = 3^9$$

$$h^2 \cdot h^9 = h^{2+9} = h^{11}$$

$$\underbrace{3 \bullet 3 \bullet 3 \bullet 3 \bullet 3}_{\xi} \bullet \underbrace{3 \bullet 3 \bullet 3 \bullet 3}_{\xi} = 3^9$$

$$h \bullet h \bullet \underbrace{h \bullet h \bullet h \bullet h \bullet h \bullet h \bullet h \bullet h}_{2} = h^{11}$$

Examples: Simplify each expression.

8. 
$$5^{-2} \cdot 5^2$$

$$1^{4} \cdot 11^{3} \qquad 8. \quad 5^{-2} \cdot 5^{2} \qquad 9. \quad 7^{-3} \cdot 7^{2} \cdot 7^{6}$$

$$= 11^{4+3} = 11^{7} \qquad = 5^{-2+2} = 5^{\circ} = 1 \qquad = 7^{-3+2+6} = 7^{\circ}$$

Examples with Variables: Simplify each expression.

11. 
$$5x \cdot 2y^4 \cdot 3x^8$$

$$5.2.3 \times ^{1+8} y^{4}$$
  
= 30  $x^{9} y^{4}$ 

10. 
$$2n^{5} \cdot 3n^{-2}$$
 11.  $5x \cdot 2y^{4} \cdot 3x^{8}$  12.  $m^{2} \cdot n^{-2} \cdot 7m^{4}$ 

$$2 \cdot 3n^{5-2} = 6n^{3}$$

$$5 \cdot 2 \cdot 3 \times 1^{+8}y^{4}$$

$$7m^{2+4}(n^{-2})$$

$$= 30 \times 9y^{4}$$
More Multiplication Properties of Exponents
$$= 7m^{3}n^{-2}$$

$$= 7m^{3}n^{-2}$$

III.

Rule: Raising a Power to a Power

For every nonzero number a and integers m and n,  $(a^m)^n = a^{m \cdot n}$ 

**Examples:** Simplify each expression.

13. 
$$(x^2)^5 = \chi^{10}$$

14. 
$$(a^{-4})^7$$
  $\frac{a}{1}$  =  $\frac{1}{a^{28}}$ 

14. 
$$(a^{-4})^7$$
  $\frac{a^{-28}}{a^{28}} = \frac{1}{a^{28}}$  15.  $c^5 \cdot (c^3)^{-2} = c^5 \cdot c^{-6} = c^{-1} = \frac{1}{c}$ 

Rule: Raising a Product to a Power

For every nonzero number a and b and integer n,  $(ab)^n = a^n b^n$ 

Examples: Simplify each expression.

16. 
$$(3x)^4 = 3^4 x^4$$

16. 
$$(3x)^4 = 3^4 \times 4$$
 17.  $(5y)^3 = 5^3 y^3 = 125 y^5$ 

Complex Examples: Simplify each expression.

= 81 (x0) x8 = 81 (1) x8 = 81 x8

18. 
$$(x^{-2})^2(3xy^2)^4$$

18. 
$$(x^{-2})^2(3xy^2)^4$$
 19.  $(2a^3)^5(3ab^2)^3 = 2^5a^{15} \cdot 3^3a^3b^6$   
 $x^{-4} 3^4 x^4 y^8 = 32 \cdot 27 a^{15+3}b^6$ 

## IV. Division Properties of Exponents

Rule: Dividing Powers with the Same Base

For every nonzero number a and integers m and n,  $\frac{a^m}{a^n} = a^{m-n}$ 

## Simply Rules to Follow:

- 1. Give each base its own fraction.
- 2. Always move the base with the smaller exponent

Examples: Simplify each expression.

20. 
$$\frac{a^{6}}{a^{14}}$$
 21.  $(\frac{c^{-1}d^{3}}{c^{5}d^{-4}})$  22.  $(\frac{a^{2}b}{a^{4}b^{3}})$  23.  $\frac{3m^{-1}n^{2}}{5m^{3}n}$ 

$$= \frac{1}{a^{14-6}} = \frac{1}{a^{8}} \qquad \frac{d^{3+4}}{c^{5+1}} = \frac{1}{a^{4-2}b^{3-1}} = \frac{3}{5} \cdot \frac{m^{-1}}{m^{3}} \cdot \frac{n^{2}}{n^{1}}$$

$$= \frac{d^{7}}{c^{6}} = \frac{1}{a^{2}b^{2}} \qquad \frac{3}{5} \cdot \frac{1}{n^{3+1}} \cdot \frac{n^{2-1}}{n^{1}}$$