I. Zero and Negative Exponents

How do Exponents Work?

1. $3 \cdot 3=3^{2}$ Base \rightarrow What is being multiplied
2. $\underbrace{4 \bullet 4 \bullet 4 \bullet 4 \bullet 4}_{5}=4^{5}$
Exponent \rightarrow How many bases you are multiplying
3. $\underbrace{x \bullet x \bullet x}_{3}=x^{3}$

Special Exponents

Zero as an Exponent: Any number (that is not zero) raised to the zero power is equal to 1
A. $5^{0}=1$
B. $(-3)^{0}=1$
C. $x^{0}=1$

Negative Exponents: Moving a base and its exponent across the fraction bar changes the sign of the exponent.

D. $2^{-1}=\frac{2^{-1}}{1}=\frac{1}{2^{1}}$
E. $\quad 3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}$
F. $\frac{1}{2^{-3}}=\frac{2^{3}}{1}=8$

Examples: Simplify the expression so that there are no negative exponents left.

1. $(-1.23)^{0}$
2. $(-4)^{-3}$
3. $\frac{2^{3}}{3^{-5}}$

Examples with Variables: Simplify the expression so that there are no negative exponents left.
4. $7 s^{-4} t^{2}$
5. $\frac{2}{a^{-3}}$
6. $\frac{n^{-5}}{v^{2}}$

II. Multiplication Properties of Exponents

Rule: Multiplication Powers with the Same Base

For every nonzero number a and integers m and $n, a^{m} \cdot a^{n}=a^{m+n}$

Examples: $\quad 3^{5} \cdot 3^{4}=3^{5+4}=3^{9}$

$$
h^{2} \cdot h^{9}=h^{2+9}=h^{11}
$$

Examples: Simplify each expression.
7. $11^{4} \cdot 11^{3}$
8. $5^{-2} \cdot 5^{2}$
9. $7^{-3} \cdot 7^{2} \cdot 7^{6}$

Examples with Variables: Simplify each expression.
10. $2 n^{5} \cdot 3 n^{-2}$
11. $5 x \cdot 2 y^{4} \cdot 3 x^{8}$
12. $m^{2} \cdot n^{-2} \cdot 7 m$

III. More Multiplication Properties of Exponents

Rule: Raising a Power to a Power

For every nonzero number a and integers m and $n,\left(a^{m}\right)^{n}=a^{m \bullet n}$

Examples: Simplify each expression.
13. $\left(x^{2}\right)^{5}$
14. $\left(a^{-4}\right)^{7}$
15. $c^{5} \cdot\left(c^{3}\right)^{-2}$

Rule: Raising a Product to a Power

For every nonzero number a and b and integer $n,(a b)^{n}=a^{n} b^{n}$

Examples: Simplify each expression.
16. $(3 x)^{4}$
17. $(5 y)^{3}$

Complex Examples: Simplify each expression.
18. $\left(x^{-2}\right)^{2}\left(3 x y^{2}\right)^{4}$
19. $\left(2 a^{3}\right)^{5}\left(3 a b^{2}\right)^{3}$

$$
\begin{aligned}
& \underbrace{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}_{5} \cdot \underbrace{3 \cdot 3 \cdot 3 \cdot 3}_{4}=3^{9} \\
& h \bullet h \bullet \underbrace{h \bullet h \bullet h}_{9}=h^{11}
\end{aligned}
$$

IV. Division Properties of Exponents

Rule: Dividing Powers with the Same Base

For every nonzero number a and integers m and $\mathrm{n}, \frac{a^{m}}{a^{n}}=a^{m-n}$

Simply Rules to Follow:

1. Give each base its own fraction.
2. Always move the base with the smaller exponent

Examples: Simplify each expression.
20. $\frac{a^{6}}{a^{14}}$
21. $\frac{c^{-1} d^{3}}{c^{5} d^{-4}}$
22. $\frac{a^{2} b}{a^{4} b^{3}}$
23. $\frac{3 m^{-1} n^{2}}{5 m^{3} n}$

