Lesson 16 **Solving Systems Using Elimination**

Elimination Method Steps to Follow:

- Put both equations in standard form; Ax + By = C
- 2. Pick one variable to eliminate.
 - a. Look for variables that have the same coefficient, but opposite signs.
 - b. If you cannot find that, make it.
 - i. Look for a number that both coefficients can become (by multiplying).
 - ii. Multiple each equation by a value that will produce the desired coefficient.
 - iii. make sure the coefficients have opposite signs. (If they don't, multiply one equation by negative one.)
- 3. Add the equations together. One variable should cancel out.
- 4. Solve the remaining equation for just the remaining variable.
- 5. Substitute the value that you found back into one of the original equations in order to solve for the second variable.
- 6. List your answer as an ordered pair.

Examples: Solve by Elimination

amples: Solve by Elimination
$$\begin{cases}
5x - 6y = -32 & \\
3x + 6y = 48 & 5(2) - 6y = -32
\end{cases}$$

$$\frac{8x}{8} = \frac{16}{8} \qquad 10 - 6y = -32$$

$$x = 2 \qquad -10 \qquad -10$$

$$x = 2 \qquad -6y = -42$$

$$x = 7 \qquad y = 7$$

$$(2x + 5y = -22 & 0 \cdot (-s)$$

$$10x + 3y = 22 & 0$$

$$10x + 3(-6) = 22$$

$$10x - 18 = 22$$

$$+ 18 + 18$$

$$y = -6 \qquad 10x = 40$$

$$y = -6 \qquad 10x = 40$$

$$y = -6 \qquad (4, -6)$$

$$(4, -6) \qquad x = 40$$

$$(4, -6) \qquad x = 40$$

3.
$$\begin{cases} 4x = -2y + 14 & \text{ } \\ 7x - 3y = -8 & \text{ } \end{aligned}$$

X = 1

1)
$$4x+2y=14$$

 $4(1)+2y=14$
 $4+2y=14$
 -4
 -4
 $2y=10$
 2
 2
 2
 2