Algebra 1 ECA Remediation

Name Answer Key

Homework 38.2

a = -16

c=3.5

1. A baseball is thrown into the air and its height (h), in feet, can be modeled by the equation $h = -16t^2 + 1 \frac{4}{9}t + 3$, where t represents time in seconds.

How many seconds will it take for the baseball to hit the ground (h=0) after it is

thrown into the air? $0 = -16 \frac{t^2 + 13t + 3}{t + 3}$ $0 = -16 \frac{t^2 - 3t + 16t + 3}{t + 3}$ $0 = -16 \frac{t^2 - 3t + 16t + 3}{t + 3}$ $0 = -t \left(\frac{16t + 3}{t}\right) + 1\left(\frac{16t + 3}{t}\right)$ 1 = t

2. Suppose a soccer player kicks a ball and the height (h) of the ball in feet can be modeled by the equation $h = -16t^2 + vt + c$, where t is the time in seconds after the ball is kicked, v is the initial upward velocity, and c is the starting height.

Write an equation that can be used to find the height (h) of the ball after t seconds 2500 + 224 = if the initial upward velocity is 50 ft/sec and the starting height is 3.5 ft.

$$V = 50 \text{ ft/sec} \quad t = \frac{-50 \pm \sqrt{50^2 - 4(-14)(3.5)}}{2(-14)}$$
Answer $h = -16t^2 + 50t + 3.5$ $c = 3.5$ ft. $t = \frac{-50 - 52.2}{-32} = \frac{10.2.2}{3.2}$

If the ball is not touched, how long will it take for the ball to reach the ground?

Answer t=3.2

A woman is going to jump into a pool from a diving board that is 40 ft above the 3. water. Her height (h) above the pool can be modeled by the equation $h = -16t^2 + vt + c$, where t is the time in seconds after the woman jumps, v is the initial upward velocity, and c is her starting height.

Write an equation that can be used to find the height (h) of the woman after tseconds if her initial upward velocity is 4 ft/sec.

Answer
$$h = -16t^2 + 4t + 40$$

$$A = -40$$

$$A =$$

How many seconds will it take for the woman to hit the water?
$$= -\frac{4 \pm \sqrt{2576}}{-32}$$
Answer
$$= \frac{1}{-4-50.75} = 1.7109$$

Sketch the graph of each linear inequality.

4.
$$y \le \frac{2}{5}x + 2$$

5.
$$y \le \frac{1}{2}x + 1$$

Divide.

6.
$$(20x^4 + 3x^3 + 10x^2) \div 10x^2$$

$$\frac{20x^{4}}{10x^{2}} + \frac{3x^{3}}{10x^{2}} + \frac{10x^{2}}{10x^{2}}$$

$$2x^2 + \frac{3x}{10} + 1$$

7.
$$(30k^4 + 30k^3 + 50k^2) \div 10k^2$$

$$\frac{30 \, \text{k}^4}{10 \, \text{k}^2} + \frac{30 \, \text{k}^3}{10 \, \text{k}^2} + \frac{50 \, \text{k}^2}{10 \, \text{k}^2}$$

Answers to Homework 38.2

2.
$$h = -16t^2 + 50t + 3.5$$
; 3.2 seconds

3.
$$h = -16t^2 + 40t + 4$$
; 1.7 seconds

6.
$$2x^2 + \frac{3x}{10} + 1$$
 7. $3k^2 + 3k + 5$

7.
$$3k^2 + 3k + 5$$