Homework 38.2

1. A baseball is thrown into the air and its height (h), in feet, can be modeled by the equation $h=-16 t^{2}+3 t+3$, where t represents time in seconds.

How many seconds will it take for the baseball to hit the ground ($h=0$) after it is thrown into the air?

Answer \qquad
2. Suppose a soccer player kicks a ball and the height (h) of the ball in feet can be modeled by the equation $h=-16 t^{2}+v t+c$, where t is the time in seconds after the ball is kicked, v is the initial upward velocity, and c is the starting height.

Write an equation that can be used to find the height (h) of the ball after t seconds if the initial upward velocity is $50 \mathrm{ft} / \mathrm{sec}$ and the starting height is 3.5 ft .

Answer \qquad

If the ball is not touched, how long will it take for the ball to reach the ground?

Answer \qquad
3. A woman is going to jump into a pool from a diving board that is 40 ft above the water. Her height (h) above the pool can be modeled by the equation $h=-16 t^{2}+v t+c$, where t is the time in seconds after the woman jumps, v is the initial upward velocity, and c is her starting height.

Write an equation that can be used to find the height (h) of the woman after t seconds if her initial upward velocity is $4 \mathrm{ft} / \mathrm{sec}$.

Answer \qquad

How many seconds will it take for the woman to hit the water?

Answer \qquad

Sketch the graph of each linear inequality.

1) $y \leq \frac{2}{5} x+2$

2) $y \leq \frac{1}{2} x+1$

Divide.
3) $\left(20 x^{4}+3 x^{3}+10 x^{2}\right) \div 10 x^{2}$
4) $\left(30 k^{4}+30 k^{3}+50 k^{2}\right) \div 10 k^{2}$

Answers to Homework 38.2

1. 1.0 seconds
2. $h=-16 t^{2}+50 t+3.5 ; 3.2$ seconds
3. $h=-16 t^{2}+40 t+4 ; 1.7$ seconds

4.

6. $2 x^{2}+\frac{3 x}{10}+1 \quad$ 7. $3 k^{2}+3 k+5$

